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Summary. Explaining the distribution of a species by using local environmental features is
a long-standing ecological problem. Often, available data are collected as a set of presence
locations only, thus precluding the possibility of a desired presence–absence analysis. We
propose that it is natural to view presence-only data as a point pattern over a region and to
use local environmental features to explain the intensity driving this point pattern. We use a
hierarchical model to treat the presence data as a realization of a spatial point process, whose
intensity is governed by the set of environmental covariates. Spatial dependence in the inten-
sity levels is modelled with random effects involving a zero-mean Gaussian process. We aug-
ment the model to capture highly variable and typically sparse sampling effort as well as land
transformation, both of which degrade the point pattern. The Cape Floristic Region in South
Africa provides an extensive class of such species data.The potential (i.e. non-degraded) pres-
ence surfaces over the entire area are of interest from a conservation and policy perspective.
The region is divided into about 37000 grid cells. To work with a Gaussian process over a
very large number of cells we use a predictive spatial process approximation. Bias correction
by adding a heteroscedastic error component has also been implemented. We illustrate with
modelling for six different species. Also, a comparison is made with the now popular Maxent
approach though it is limited with regard to inference. The resultant patterns are important
on their own but also enable a comparative view, for example, to investigate whether a pair
of species are potentially competing in the same area. An additional feature of our modelling
is the opportunity to infer about biodiversity through species richness, i.e. the number of dis-
tinct species in an areal unit. Such an investigation immediately follows within our modelling
framework.
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1. Introduction

Learning about distributions of species is a long-standing issue in ecology with, by now, an
enormous literature. Useful review papers that organize and compare model approaches include
Elith et al. (2006), Wisz et al. (2008) and references therein. Our focus here is on model-based
approaches to study this problem. A substantial proportion of the model-based work focuses on
modelling presence or absence where the data are available as a presence (1) or absence (0) at a
collection of sampling locations. The goal is to explain the probability of presence at a location
given the environmental conditions that are present there. The natural approach is to build a
generalized additive binary regression model, with say a logistic link, where the covariates can be
introduced linearly or as smoothly varying functions. Such generalized additive models tend to
fit data well since they employ additional parameters to enable the response variables to assume
non-linear and multimodal relationships with the data (Guisan et al., 2002; Elith et al., 2006).
They can also provide a qualitative picture of how species respond to environmental variables.
The price is that generalized additive models lose simplicity in interpretation and risk overfitting
with poor out-of-sample prediction.

Much of this work is non-spatial in the sense that, though it includes spatial covariate infor-
mation, it does not model anticipated spatial dependence in presence–absence probabilities.
Accounting for the latter seems critical since causal ecological explanations such as localized
dispersal as well as omitted (unobserved) explanatory variables with spatial pattern such as local
smoothness of soil or topographic features suggest that, at sufficiently high resolution, occur-
rence of a species at one location will be associated with its occurrence at neighbouring locations
(Ver Hoef et al., 2001). In particular, such dependence structure, which is introduced through
spatial random effects, facilitates learning about presence or absence for portions of a study
region that have not been sampled, accommodating gaps in sampling and irregular sampling
intensity. For point level categorical responses, Higgs and Hoeting (2010) used a Gaussian pro-
cess (GP) prior for these spatial effects. For areal level count data, Markov random-field priors
(Besag, 1974; Banerjee et al., 2004) have been used in Augustin et al. (1996) and later incorpo-
rated into a hierarchical Bayesian model setting by Gelfand et al. (2005a, b) and Chakraborty
et al. (2010). See also Latimer et al. (2006) in this regard.

The focus of the work here is on the so-called presence-only setting. Analysis of presence-only
data has seen growing popularity in recent years due to increased availability of such records from
museum databases and other non-systematic surveys; see Graham et al. (2004). A noteworthy
point is that presence-only data are not inferior to presence–absence data. In fact, it is the con-
verse; in principle, presence-only data offer a complete census whereas presence–absence data,
since confined to a specified set of sampling sites, contain less information. One model-based
strategy for presence-only data has attempted to implement a presence–absence approach. All
of this work depends on drawing so-called background samples, which are random samples
of locations in the region with known environmental features. Early work here characterized
these samples as pseudoabsences (Engler et al., 2004; Ferrier et al., 2002) and fitted a logistic
regression to the observed presences and these pseudoabsences. Since presence or absence is
unknown for these samples, recent work (Pearce and Boyce, 2006; Ward et al., 2009) shows
how to adjust the resulting logistic regression to account for this. Additionally, all of this work
is non-spatial in the sense of the previous paragraph. Perhaps, most importantly, as we argue
below, this approach conditions in the wrong direction. We assert that the observed presences
can be viewed as a marked point pattern with the mark indicating presence (see the recent work
of Warton and Shepherd (2010) in this regard). We do not have a point pattern of absences;
pseudoabsences create an unobserved and artificial pattern of absences.
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Alternative algorithmic approaches include the genetic algorithm for rule-set prediction
approach (Peterson and Kluza, 2003) and the maximum entropy approach Maxent; see, for
example, Phillips et al. (2006, 2009). The genetic algorithm for rule-set prediction is based
on an artificial intelligence framework to produce a set of positive and negative rules that,
together, give a binary prediction. Rules are favoured according to their effectiveness (com-
pared with random prediction) on the basis of a sample of background data and presence data.
Maxent is a constrained optimization method which finds the optimal species density (closest
to a uniform) subject to moment constraints. Maxent predictions have usually been found to
have higher predictive accuracy on average than the genetic algorithm for rule-set prediction
(Elith et al., 2006). Moreover, with the availability of a fairly recent attractive software package
(http://www.cs.princeton.edu/schapire/maxent), Maxent is now becoming the
standard approach for presence-only data analysis. The point pattern analysis approach that we
develop provides an appealing alternative in that it is fully model based, allowing full inference
with associated uncertainty everywhere in the region.

We model presence-only data as a point pattern with associated intensity specified in terms
of the available environments across the region, as in Warton and Sherpherd (2010). We do
this through typical regression modelling, enabling a natural interpretation for the coefficients.
We employ a hierarchical model to introduce spatial structure for the intensity surface through
spatial random effects. We do not assume any background or pseudoabsence samples; rather,
we assume that the covariates that we employ are available as surfaces over the region to inter-
polate an intensity over the entire region. We acknowledge that the observed point pattern is
biased through anthropogenic processes, e.g. human intervention to transform the landscape,
and non-uniform (in fact, often very irregular) sampling effort. This requires adjusting the
potential species intensity to a realized intensity which we treat as a degradation of the former.
The implications of such bias and the need for bias correction by using any of the presence-only
analysis approaches has been discussed in the literature. See, for example, Phillips et al. (2009),
Veloz (2009) and references therein. Lastly, an attractive by-product of our modelling is the
opportunity to study species richness, i.e. the expected number of distinct species in a specified
region. In particular, we can obtain potential and observed richness surfaces.

We work with presence-only data collected from the Cape Floristic Region (CFR) in South
Africa (Fig. 1). The region is divided into approximately 37000 grid cells, each 1′ ×1′ (roughly
1:55 km × 1:85 km). Covariate information is available only at grid cell level so we model the
intensity as a tiled surface over these cells. We provide potential and degraded intensities for six
species as well as richness distributions with respect to them (Section 4).

The format of the paper is as follows. Section 2 reviews the common issues that arise in mod-
elling species distribution data sets. Section 3 develops a point process model for the presence-
only data sets. Section 4 shows how we can study richness. Section 5 details the computational
and inferential issues that are related to high dimensional spatial data. Section 6 compares
our approach with the Maxent (Phillips and Dudík, 2008) method for synthetic data sets. In
Section 7, we present the data analysis with interpretation and conclude with some discussion
and future extensions in Section 8.

2. Basic issues and existing approaches

The simplest approaches to predicting species distributions based on presence-only data are
based directly on the environmental envelope that is associated with observed occurrences. In
these approaches, one summarizes the suite of environmental attributes of species site occur-
rences and extrapolates potential presence to other sites with similar attributes; there is no
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Fig. 1. CFR of South Africa: the inset shows the location of the CFR within the African continent; the 90000
km2 region was divided into 36907 10 cells; the proportion of untransformed land at the grid cell level is shown
as well

spatial component to the prediction. The BIOCLIM and DOMAIN models use variations on
this approach (Elith et al., 2006). Typically, one draws convex hulls around sites of occurrence
(perhaps with extrapolations) to identify a geographical region which is interpreted as the range
for the species. This raises the question of whether we should require spatial contiguity for a
species geographic range. Furthermore, from a stochastic perspective, do we insist on hard edges
for ranges or, by thresholding probabilities, do we prefer soft ranges? Various alternative algo-
rithmic approaches include the genetic algorithm for rule-set prediction (Stockwell and Peters,
1999), artificial neural nets (Lek et al., 1996), boosted regression trees (also called stochastic
gradient boosting; Elith et al. (2008)), random forests (Breiman, 2001) and climate envelope
models (Heikkinen et al., 2006).

Maxent is an algorithmic tool that produces a probability density surface which maximizes
entropy given constraints that are imposed by the collection of vectors of environmental variable
values at the sites at which the species has been observed. These constraints require that the
average of each of the environmental covariates under this distribution essentially agrees with
the empirical average for this covariate on the basis of samples over the region. The constrained
optimization introduces regularization weights, one for each moment constraint. The optimi-
zation is solved only approximately, i.e. each constraint is satisfied within a specified precision
to avoid overfitting. As an optimization strategy rather than a stochastic modelling approach,
Maxent cannot attach any uncertainty to resulting optimized estimates. The resultant surface
is interpreted as providing the relative probability of observing a species at a given location
compared with other locations in the region. However, Maxent cannot provide an absolute
intensity; hence, we cannot determine the expected number of individuals in a specified region.
The approach that we propose below addresses all of these issues. However, in Section 5 we
make comparison between Maxent and our approach within the limitations of Maxent. For the
CFR data set, we present only the analysis under our approach.

As noted Section 1, a much different strategy introduces pseudoabsences to fit a binary regres-
sion model, most commonly a logistic regression, modelling the probability of presence given
environmental covariates; see for example Ferrier et al. (2002) and Engler et al. (2004). More
recent work (Pearce and Boyce, 2006; Ward et al., 2009) acknowledges that presence or absence
is unknown for these background samples and attempts to adjust the resulting logistic regres-
sion to account for this. Alas, this requires specifying the overall population prevalence of the
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species, a notion which, for a given region, is not well defined. In any event, both Pearce and
Boyce (2006) and Ward et al. (2009) noted that this marginal prevalence will not be known and
the latter clearly argued that estimating it from presence-only data is not feasible in practice.
Furthermore, how are such background samples developed? Ideally, we seek a random sample
of the available environment. It is not clear how to do this but it is clear that we do not want to
draw locations uniformly from the study region. Moreover, it is obvious that inference depends
on the number of background samples drawn, an arbitrary choice which can substantially influ-
ence the resultant inference (Pearce and Boyce (2006), page 407). Finally, despite the natural
expectation that there should be spatial dependence in the presence–absence probabilities, none
of this work employs spatial dependence structure.

Most of these approaches fail to address bias that may exist in sampling occurrences. Yet
such bias in sampling is a common problem; see for example Loiselle et al. (2007) and refer-
ences therein. Recently Diggle et al. (2010) addressed this issue, referring to it as preferential
sampling. Variation in site access is one of the factors that influence the likelihood of the site
to be sampled. For example, sites that are adjacent to roads or along paths, near urban areas,
with public ownership or with flat topography are likely to be oversampled relatively to more
inaccessible sites. When bias implies that only a portion of the region is sampled, perhaps only
a portion of the overall point pattern is observed. In addition, there may be temporal bias in
sampling. For example, as one learns more about the ecology of the species of interest sample
site selection may change (Lobo et al., 2007).

Land use, as a result of human intervention, affects availability of locations, and hence infer-
ence about the intensity. As a result of human intervention, areas within the study region are
not available for a species. Also, agricultural transformation and dense stands of alien invasive
species preclude availability. Fig. 1 shows the extent of transformation across the CFR at the
grid cell level. Transformed areas are not sampled and so this information must be included in
the modelling. Altogether, sampling is sparse and irregular. In fact, only 10158 of the 36907
(28%) grid cells were sampled (Fig. 2). It is unlikely that we have collected a random sample of
available environments.

Detection can affect inference regarding the intensity, i.e. we may incorrectly identify a species
as present which is actually absent (false presence) or fail to detect a species that is actually pres-
ent (false absence) (Reese et al., 2005). Evidently, the prevalence of these false records will affect

Fig. 2. Cells within the CFR that have at least one observation from the Proteas Atlas data set ( ) and cells
with no observations ( )
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the attempt of an explanatory model on environmental features (Tyre et al., 2003). Modelling
for these errors can be attempted but requires information beyond the observed presence data.

3. Point process modelling

We view the observed presence-only data as a point pattern subject to degradation. In Section 3.1
we detail a general point process specification for this problem. In Section 3.2 we formalize the
likelihood and posterior and propose a grid cell level approximation.

3.1. Probability model for presence locations
As is customary for point patterns, we assume a non-homogeneous Poisson process (NHPP)
model (Van Lieshout, 2000), which was also referred to as an inhomogeneous Poisson process
in Diggle (2003), for the set of presence locations. We must introduce degradation caused by
sampling bias as well as by land transformation. As a result, we conceptualize a potential inten-
sity, i.e. the intensity in the absence of degradation, as well as a realized (or effective) intensity
that operates in the presence of degradation. Further, we tile the intensity to reflect our inability
to explain it at spatial resolution finer than our grid cells.

We begin by imagining three surfaces over D. Let λ.s/ be the ‘potential’ intensity surface, i.e. a
positive function which is integrable over D. λ.s/ is the intensity in the absence of degradation.
Let

∫
D λ.s/ ds = λ.D/. Then, g.s/ = λ.s/=λ.D/ gives the potential density over D. Modelling

for λ.s/ will be provided in Section 3.2. Next, we envision an availability surface U (s), which
is a binary surface over D such that U.s/ = 1 or U.s/ = 0 according to whether location s is
untransformed by land use or not, i.e., assuming no sampling bias, λ.s/U.s/ can be only λ.s/ or
0 according to whether s is available or not. Let Ai denote the geographical region corresponding
to cell i. Then, if we average U.s/ over Ai, we obtain ui =

∫
Ai

U.s/ds=|Ai|, where ui is the pro-
portion of cell i that is transformed and |Ai| is the area of cell i. In our setting ui is known,
through remote sensing, for all grid cells. Similarly, we envision a sampling effort surface over
D which we denote as T.s/. T.s/ is also a binary surface and T.s/U.s/=1 indicates that location
s is both available and sampled. Now, we can set qi =

∫
Ai

T.s/U.s/ds=|Ai| and interpret qi as
the probability that a randomly selected location in Ai was available and sampled. Thus we can
capture availability and sampling effort at areal unit scale.

Hence, λ.s/U.s/T.s/ becomes the degradation at location s. This implies that, in regions where
no locations were sampled, the operating intensity for the species is 0. In this regard, we note that
we do not envision a probability density surface for sampling effort as in the Maxent literature
(Phillips and Dudík, 2008). Rather,

∫
Ai

T.s/ds=|Ai| can be viewed as the sampling probability
that is associated with cell i. Then, if T.s/ is viewed as random, the expectation of the integral
would yield

∫
Ai

p.s/ds=|Ai| where, now, p.s/=P{T.s/=1}∈ [0, 1]. Clearly, p.s/ gives the local
probabilities of sampling: not a probability density over D.

To go forward, we assume that λ.s/ is independent of T.s/U.s/, i.e. the potential intensity for
a species is independent of the degradation process. Then, omitting the details, we can write∫

Ai
λ.s/T.S/U.s/ds=λiqi where λi =

∫
Ai

λ.s/ds is the cumulative intensity that is associated with
cell Ai and, again,

qi = 1
|Ai|

∫
Ai

T.s/U.s/ds:

It is not sensible to imagine that sampling effort is independent of land transformation. In fact,
we might expect less sampling attention to be paid to more transformed areas (Reese et al.,
2005; Veloz, 2009). More directly, if U.s/=0 then T.s/=0. Hence, if we define qi =uipi, then
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pi =
∫

Ai

T.s/U.s/ds

/∫
Ai

U.s/ds,

i.e. pi is the conditional probability that a randomly selected location in cell i is sampled given
that it is available. In our application below we set pi equal to 1 or 0 which we interpret as
T.s/=U.s/ ∀s ∈Ai or T.s/= 0 ∀s ∈Ai respectively. In particular, we set pi = 1 if cell i was sam-
pled for any species in our data set; otherwise, we set pi = 0. For the CFR, this sets pi = 1 for
the 10158 grid cells that have been visited.

3.2. Likelihood and posterior
Now we turn to modelling of the potential intensity surface λ.·/. We employ a GP prior, which
results in a log-Gaussian Cox process model (Møller and Waagepetersen (2004), section 5.6) for
the observed data. We expect the environmental covariates, say x.s/, to influence the intensity
and model the mean of the GP as a linear combination of them. Then for any location s ∈D,
we have

log{λ.s/}=xT.s/β +w.s/ .1/

with w.·/, a zero-mean stationary, isotropic GP over D, to capture residual spatial association
in the λ-surface across grid cells. The Matérn family of covariance functions provides a flex-
ible class of isotropic dependence; in what follows we use the special case of the exponential
covariance function.

As above, suppose that we have ni presence locations .si,1, si,2, . . . , si,ni/ within cell i for
i = 1, 2, . . . , I. Following the discussion in Section 3.1, U.si,j/ T.si,j/ ≡ 1, 0 � j � ni, 1 � i � I.
Then the likelihood function corresponding to NHPP{λ.·/} becomes

L[λ.·/;{si,j}]∝ exp
{

−
∫

D

λ.s/U.s/T.s/ds

}
I∏

i=1

ni∏
j=1

λ.si,j/: .2/

Although we have only finitely many presence locations, the integral term in L involves the
uncountable random field {λ.s/ : s∈D}. Fortunately, we have a natural approximation by recall-
ing that the data set is gathered at the scale of grid cells in the CFR, i.e. though we have geocoded
locations for the observed sites, with covariate information at grid cell level, we attempt to
explain only the point pattern at grid cell level. In particular, let D denote our CFR study
domain where D is divided into I =36907 grid cells of equal area. For each cell i=1, 2, 3, . . . , I,
we are given information on l covariates as xi = .xi1, xi2, . . . , xil/. We also have cell level infor-
mation about availability of land across D, as a proportion of the area of the cell (Fig. 1).
Following the previous subsection, we denote this by ui. For many cells ni =0 primarily because
72% were actually unsampled. Additionally, a computational advantage accrues to working
at grid cell level; we can work with a product Poisson likelihood approximation rather than
the point pattern likelihood in expression (2), i.e. we assume that λ.·/ is a tiled surface such
that, for cell i, the height is Δλ.si/ where Δ is the area of the cell and si is the centroid. Then,
given the set {λ.si/, i = 1, 2, . . . , I}, the ni are independent and ni ∼ Po{Δλ.si/qi}. Approxi-
mation of the point pattern likelihood by using a tiled surface over a lattice embedding the
region was discussed in Beneš et al. (2003). The approximation was justified in the sense that
the resulting approximate posterior converges to the true posterior as the partition becomes
finer.

Note that, for any cell with qi = 0 (which can happen if either pi = 0 or ui = 0), there is no
contribution from Ai in the product Poisson likelihood. Since, from equation (1), log{λ.s/}
follows a GP, the posterior distribution takes the form
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π{λ.s1:m/, β, θ|n, x, u, q}∝ exp
{

−
I∑

i=1
λ.si/Δiqi

}
m∏

i=1
λni.si/

×φm[log{λ.s1:m/}|β, x, θ] π.β/π.θ/ .3/

where φm denotes the m-dimensional Gaussian density and θ the parameters in the covariance
function of w.·/ in equation (1). Sampling from expression (3) by using Markov chain Monte
Carlo (MCMC) methods is discussed in Section 5.2 and in Appendix A.

We conclude this section by noting potential interest in establishing the consistency of the pos-
terior (3), i.e. convergence of the modelled posterior to the true posterior. This involves proving
that, under a log-Gaussian process model, λ.s/→λ0.s/, the true intensity, in supremum norm.
Conditions and the associated argument are mentioned in a file of supplementary information
associated with the paper on the publisher’s Web site.

4. Studying richness with presence-only data

Recall the definition of species richness for a specified region. Relative to a specified set of spe-
cies, the observed richness is the number of distinct species that are found in that region. Here,
we show how our modelling above provides a parametric function for expected richness. By
comparison, an often-used approach with Maxent is merely to sum over the individual species
densities (Newbold et al., 2009). The interpretation of such a sum as a richness when integrated
over a subregion is possibly unsatisfying and, in any case, no uncertainty can be attached to any
estimates that are made by using this sum.

Under the presence-only setting, we imagine that data arrive in the form .sj, l.sj//, j =
1, 2, . . . , n, i.e. a random location and a species label associated with that location. Suppose
that we use the foregoing modelling to create a species intensity λl.s/ for species l=1, 2, . . . , L.
For a set A within the study region, we define the richness for A to be the expected number of
distinct species in A. Under this definition, we expect more species as A grows larger and no
species as the area of A goes to 0.

Let n.A/ be the total number of observations in A, i.e. the total number of locations in A where
a ‘presence-only’ observation of any species was recorded. Let nl.A/ be the number of locations
in A where species l was observed. Finally, let r.A/=Σl1{nl.A/>0}, where 1.·/ is the indicator
function. Then r.A/ is the ‘realized’ richness in A. Thus, the quantity that we seek to infer about
is E{r.A/}. Note that E[1{nl.A/> 0}]=1− exp{−λl.A/} since nl.A/∼Po{λl.A/}. Hence,

E{r.A/}=∑
l

[1− exp{−λl.A/}]:

Evidently, richness is not additive, i.e.

E{r.A1/∪ r.A2/} 
=E{r.A1/}+E{r.A2/}:

With model fitting for each λl.s/, we can obtain posterior samples of E{r.A/} for any A by
obtaining posterior samples for each λl.A/. Such samples are obtained through appropriate
integration (summation for the Poisson approximation version) of λl.s/ over A. If we work with
the collection of grid cells Ai, we can supply a richness surface for the entire CFR. Adjustment
for transformation and sampling intensity can be introduced as above to distinguish a potential
and degraded surface. We illustrate this in Section 7.

5. Computation and inference

We fit the models of the previous section by using MCMC sampling. The primary computational
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challenge in working with the CFR is handling the model fitting for 37 000 grid cells, which
is the familiar ‘large n’ problem for GPs; see Banerjee et al. (2004). We employ the predictive
process approximation for Gaussian random fields (Banerjee et al., 2008). With grid cells, an
alternative is a parallelization scheme in conjunction with a conditional auto-regressive model
as described in Chakraborty et al. (2010).

5.1. Predictive process approximation
In the context of MCMC sampling, employing a GP on a large collection of locations is
computationally demanding, because of the necessary repeated inversion of the covariance
matrix arising from the process. There are several approximation techniques in the literature,
such as process convolution (Higdon, 2002), approximate likelihood (Stein et al., 2004) and
fixed rank kriging (Cressie and Johannesson, 2008). The predictive process method (Banerjee
et al., 2008) accommodates a high dimensional GP as follows. If w.·/ is the zero-mean GP un-
der consideration, and our data consist of locations s1:I = .s1, s2, . . . , sI/ where I is large, then
the method proceeds by first choosing r locations s0

1:r = .s0
1, s0

2, . . . , s0
r / from the region, called

knots, and then replaces w.s1:I/ in the model equation by w̃.s1:I/ =E{w.s1:I/|w.s0
1:r/} =Lw.s0

1:r/

where the matrix L is calculated from the dependence structure of w.·/. L depends on correlation
parameters but not on the process variance. In our setting, we apply this approximation to the
{λ.sj/} in distribution (3) through the {w.sj/}.

We introduce bias correction, which is a modification that was discussed in Finley et al. (2009).
Since var{w.sj/}� var{w̃.sj/} for each j, the predictive process is expected to underestimate
the spatial variance and to increase the variance of the nugget term. The correction introduces
a heteroscedastic error "Å with var."Å

j / = var{w.sj/}− var{w̃.sj/}. No additional parameters
are brought in with this correction so we retain the benefit of a lower dimensional spatial asso-
ciation structure. The computational advantage of this method is illustrated in Section 5.3 and
Appendix A.

5.2. Markov chain Monte Carlo sampling
In Section 3.2, we supplied the likelihood and posterior under our model. In what follows,
we approximate expression (3), employing the predictive process technique that was discussed
above. The joint set of locations (s1:I , s0

1:r/ partition the spatial covariance matrix as

σ2Rn+r.φ/=σ2
(

RI.φ/ Rr,I.φ/

RI,r.φ/ Rr.φ/

)
,

where the entries of Rr+I are exponential correlation terms with decay parameter φ. We rewrite
Λ0,i = λ.si/Δ, which denotes the expected species count in cell i under potential prevalence.
Now the hierarchical model looks like

ni|Λ0,i
ind∼ Poi.Λ0,iqi/, i=1, 2, . . . , I,

log{λ.si/}=xT
i β + w̃.si/+ "Å

i ,

w̃.s1:I/=RI,r.φ/R−1
r .φ/w.s0

1:r/,

w.s0
1:r/∼Nr{0r, Rr.φ/},

"Å
i

ind∼ N[0, σ2{1− .RI,r.φ/ R−1
r .φ/ Rr,I.φ//ii}],

π.β, φ, σ2/=π.β/π.φ/π.σ2/:

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.4/

From Section 5.1, L.φ/=RI,r.φ/R−1
r .φ/. In the absence of prior knowledge, we can use weak

prior distributions for β and σ2 as Gaussian and inverse gamma respectively. A common issue
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in spatial modelling is to identify σ2 and φ simultaneously (Zhang, 2004). For the exponential
covariance function, we have φ≈3=d, where d is the spatial range, i.e. the distance after which
spatial association between pairs of sites falls below 0.05. With a vague prior for σ2, we must be
informative about the support of d. In implementing the MCMC algorithm, β, σ2 and w.s0

1:r/

were updated by using Gibbs steps whereas, for λ.s1:I/ and φ, Metropolis–Hastings steps need
to be used. Alternatively, λ.s1:I/ can be updated by using slice sampling. The posterior uncer-
tainty of any λi goes down as qi approaches 1. The acceptance rate for φ merits attention, since
a rate above 40% or so pushes the posterior mode to one end of the prior support (indicating the
need to readjust the support), whereas a rate less than 10% suggests that the proposal interval
is too wide. So, tuning is needed but, once an effective choice has been made, the data could
identify a unimodal posterior for φ within that support. To compute the Metropolis–Hastings
ratio for φ, we can use the Sherman–Woodbury–Morrison formula (Harville, 1997) to invert
the I -dimensional covariance matrix, utilizing the r-dimensional dependence in the spatial part.
Computational details as well as the posterior full conditionals for model parameters are pro-
vided in Appendix A.

5.3. Posterior inference
As mentioned before, the two principal objectives of this data analysis are to understand the
effect of environmental variables on species distribution and, more importantly, to construct
maps of the potential and realized intensities over the entire study region. Posterior samples of
β help us to infer whether a particular factor has a significant effect (positive or negative) on
species intensity. The φ-parameter indicates the strength of spatial association between neigh-
bouring cells after adjusting for covariate effects. A large value of φ implies rapid decay in such
association, whereas a small value generally highlights the usefulness of a spatial random effect
in the intensity function. This association may arise because some potentially important covari-
ates are not available or because the effect of the covariate is not well captured by using a linear
form. However, since Gaussian processes can capture a wide range of dependences, using them
in a hierarchical setting enhances predictive performance for the model.

If, out of I cells, only m cells were sampled and contributed to the model fitting then inference
for the remaining I −m cells is done from their posterior predictive distributions. The foregoing
predictive process approximation yields

log{λ.sm+1:I/}=x.sm+1:I/β +RI−m,r.φ/R−1
r .φ/w.s0

1:r/+ "Å
m+1:I ,

"Å
i

ind∼ φI−m[0, σ2{1− .RI−m,r.φ/R−1
r .φ/Rr,I−m.φ//ii}], m<i� I: .5/

So, conditional on posterior samples of β, φ and w.s0
1:r/, we can draw samples from the posterior

predictive distribution of log{λ.sm+1:I/}, independent of log{λ.s1:m/}, owing to the indepen-
dence between "Ås across sites. This is computationally very efficient, as independence also
across components of λ.sm+1:I/ (conditional on process parameters) ensures that we do not
have to draw from a high dimensional multivariate Gaussian distribution, even if we want to
predict the intensity surface at thousands of unsampled sites.

With regard to displays of intensity surfaces, since, in our CFR application, pi =1 (i.e. T.s/=
U.s/ for all s in cell i) or pi = 0 (i.e. T.s/ = 0 for all s in cell i) and since only 28% of cells
were sampled, the λipi-surface will be 0 for 72% of cells, primarily capturing the (lack of) sam-
pling effort. The λiui-surface reveals the effect of transformation. Since few cells are completely
transformed, most λiui > 0. Of course, the λ.s/ surface is most interesting since it offers insight
into the expected pattern of presences over all of D. Posterior draws of λ1:I can be used to
infer about the potential intensity, displaying say the posterior mean surface. We can also learn
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about the potential density g (Section 3.1) in this discretized setting as gi =λi=ΣI
k=1λk, and the

corresponding density under transformation as gu,i =λiui=ΣI
k=1λkuk. Corresponding posterior

summaries for the CFR application are shown in Section 7.

6. Comparison with Maxent

Since Maxent has emerged as the current approach of choice for handling presence-only data,
we attempt a comparison of performance with our methodology. Owing to the limitations in
inference that are available under Maxent, which were detailed in Section 2, we confine ourselves
to a comparison within the capabilities of Maxent.

We offer a simulation study comparing the performance of Maxent and our method under
several scenarios. First, we do an error analysis under both models with the data generated by
using a log-GP point pattern. We compare performance under varying σ2 and φ by using three
different values for each (Table 1). We first experimented with a moderate-size data set on 225
grid cells such that exact GP computation can be performed. To match the number of cells for
the application in Section 7, we also worked with a simulated data set on 5625 cells, employing
the predictive process approximation of Section 5.1. The goodness of fit was measured by

(a) the usual mean-square error

1
n

∑
.gtrue,i −gest,i/

2

(where the gis were defined in Section 5.3) and by
(b) the commonly used loss function for probabilities,

1
n

∑ .gtrue,i −gest,i/
2

gtrue,i.1−gtrue,i/
:

We shall refer to these as ‘loss 1’ and ‘loss 2’ respectively in the following tables.
To describe the details of simulation, let us start with a rectangle D= [0, 3:4]× [0, 3:4] as the

event region. On D, we construct three covariate surfaces x1, x2 and x3 such that at a location
s= .s1, s2/∈D

x1.s/=−1+0:7s1 −0:5exp.−0:5s2/−2sin.3s1/+0:1N.0, 1/,

x2.s/=−1−0:55s1s2 +0:4 N.0, 1/,

x3.s/=−2−0:7s1:5
1 + log.0:5+ s0:8

1 /+0:68s2 +0:2N.0, 1/:

For well-behavedness we rescale all covariate surfaces to [0, 1]. Then, over D, we generate a zero-
mean spatial random field w with scale σ2 and range φ for the exponential covariance function
varying as described above. The within-cell homogeneous intensity surface using λ.·/ evaluated
at the cell centres was created as in equation (1). We simulated a point pattern realization with
the intensity surface λ.s/ each time. The results are summarized in Table 1.

Next, to enrich our comparison, we analyse relative performance under misspecification of
the model. Typically, environmental factors will be influencing the presence intensity which we
do not know or cannot observe. So, the set of covariates that is used for model fitting excludes
such factors. For the 225 grid cells setting, we employ three covariate surfaces x1, x2 and x3, but
do not use any spatial random effects (ws) in the simulation.

For analysis, we consider six models, excluding the complete and the null specifications. In
each case, we do two types of performance analysis using both Maxent and our approach. First,
we assume that all the cells are exhaustively sampled, and we use the full set of points for
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Fig. 3. Maps for all six covariate surfaces over the CFR: (a) mean annual precipitation; (b) July (winter)
minimum temperature; (c) January (summer) maximum temperature; (d) potential evapotranspiration; (e)
summer soil moisture days; (f) percentage of the grid cell with low fertility soil

inference and comparison. Then, we use a biased sampling approach assuming a known 0–1
sampling scheme, with 75 out of 225 cells unsampled and locations from those cells not consid-
ered in model fitting. In this case, we compare the performance under loss 1 and loss 2 only for
the prediction for unsampled cells.

Table 2 summarizes the results for models employing various subsets of variables. Again, we
see substantial improvement in predictive performance by using our modelling approach. With
loss 1, at the least, we see a gain of 45% and in the best case more than 85%. With loss 2 the gains
are even greater. We do relatively better with the biased sampling setting than the exhaustive
sampling case. Finally, we do relatively better with smaller models than with larger models.

7. Analysing the Cape Floristic Region data

The CFR is the smallest of the world’s six floral kingdoms, encompassing a small region of
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Table 3. Posterior mean of covariate effects with central 95% credible interval in parentheses

Species EVAP MAX01 MIN07 MAP SMDSUM FERT

PRAURE −4.909 2.702 −0.301 −1.222 −0.049 0.501
(−6.506,−3.057) (1.574,3.678) (−0.967,0.425) (−1.975,−0.423) (−0.816,0.711) (0.034,0.967)

PRCYNA −2.447 1.268 −1.032 −0.833 0.552 0.802
(−2.981,−1.859) (0.853,1.619) (−1.314,−0.469) (−1.021,−0.626) (0.255,0.830) (0.642,0.957)

LDSG 0.721 −0.420 0.137 −0.376 0.488 0.099
(0.373,1.085) (−0.658,−0.181) (−0.011,0.295) (−0.513,−0.237) (0.304,0.673) (0.045,0.152)

PRMUND −0.219 0.028 −0.609 −0.199 1.082 0.507
(−2.724,1.429) (−1.163,1.702) (−1.039,−0.055) (−1.024,0.510) (0.277,1.809) (0.101,0.929)

PRPUNC 2.076 −1.590 −1.722 0.363 0.535 0.186
(1.031,3.096) (−2.290,−0.921) (−2.048,−1.409) (0.082,0.662) (0.052,1.079) (−0.014,0.381)

PRREPE 1.690 −1.205 −0.275 0.124 0.094 0.224
(1.243,2.124) (−1.498,−0.907) (−0.431,−0.110) (−0.011,0.278) (−0.112,0.320) (0.152,0.295)

south-western South Africa, about 90000 km2, including the Cape of Good Hope. It offers high
levels of plant species diversity (9000 plant species) and endemism (69% found nowhere else).
The plant diversity in the CFR is concentrated in relatively few groups, like the icon flowering
plant family of South Africa, the Proteaceae. We consider six species within this family. Our
point pattern for each species is drawn from the Protea Atlas data set (Rebelo, 2002). They are
Protea aurea, PRAURE, at 603 locations, Protea cynaroides, PRCYNA, at 8172 locations, Leu-
cadendron salignum, LDSG, at 22 949 locations, Protea mundii, PRMUND, at 764 locations,
Protea punctata, PRPUNC, at 2148 locations and Protea repens, PRREPE, at 14574 locations.

In earlier work (Gelfand et al., 2005a, b) 18 environmental explanatory variables were con-
sidered, which were available at a minimum pixel resolution of 1′ latitude by 1′ longitude. On the
basis of these analyses we have chosen the six most important as covariates for our intensity func-
tion. They are mean annual precipitation MAP, July (winter) minimum temperature MIN07,
January (summer) maximum temperature MAX01, potential evapotranspiration EVAP, sum-
mer soil moisture days SMDSUM, and percentage of the grid cell with low fertility soil, FERT,
with associated surfaces in Fig. 3.

We implemented the modelling in Section 3 on the CFR presence-only data for the six species
above over the whole CFR. We centred and scaled all the xs. The very large data sets were han-
dled efficiently by using C++ with the Intel mathematics kernel library (http://software.
intel.com/en-us/intel-mkl/). The outputs that are presented below are created by
first running 15000 MCMC iterations, discarding the initial 5000 samples and thinning the
rest at every fifth sample. Summary output from the model fitting is presented through the
following table and diagrams. Table 3 provides the posterior mean covariate effects for all spe-
cies along with the associated 95% equal tail credible intervals in parentheses. Most of the
coefficients are significantly different from 0 and, also, the direction of significance varies with
species.

Together, Figs 4 and 5 show the posterior mean intensity surfaces (potential and transformed)
for the six species. Evidently there is strong spatial pattern and the pattern varies with species,
i.e. the nature of local adjustment to the regression is species dependent. A comparison between
the transformed and potential for each species is illuminating. Differentials of multiple orders
of magnitude in expected cell counts are seen across many grid cells. Finally, Fig. 6 shows the
transformed and potential richness surfaces at grid cell level utilizing the six species. Admittedly,
these displays are primarily illustrative; in practice, we would investigate richness with regard
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(a) (b)

(c) (d)

(e) (f)

Fig. 4. Maps of estimated species intensities over the CFR for (a), (b) Protea aurea, (c), (d) Protea cyna-
roides and (e), (f) Leucadendron salignum: (a), (c), (e) potential; (b), (d), (f) transformed

to a much larger set of species. Still, the variation and pattern in potential biodiversity across
the CFR is noteworthy.

8. Discussion

We have developed a multilevel point pattern model to explain species distribution by using
presence-only data. Our fully model-based approach, though computationally more demand-
ing, provides inference beyond the capabilities of the now widely used Maxent and substantially
improves on it in terms of predictive performance. Our approach also avoids the problematic
assumptions that are needed in converting the problem to a presence–absence analysis using
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(a) (b)

(c) (d)

(e) (f)

Fig. 5. Maps of estimated species intensities over the CFR for (a), (b) Protea mundii , (c), (d) Protea punctata
and (e), (f) Protea repens: (a), (c), (e) potential; (b), (d), (f) transformed

background samples. As with Maxent, our approach accommodates covariate information pro-
vided that it is available (at some suitable resolution) for the entire region and it introduces spatial
random effects to provide spatially smooth local adjustment to the intensity surface.

Future work could see a dynamic investigation, possibly to assess the response in terms of spe-
cies distribution to climate change. Another possibility is to model the intensities jointly through
multivariate GP models for the random effects. Arguably, the most serious challenge is to study
the entire ensemble of more than 8000 species in the CFR for which we have point patterns.
Evidently, it is computationally infeasible to do this at the individual level. We are exploring
clustering strategies (a data-driven taxonomy) through extensions of Dirichlet process models
(Chakraborty (2010), chapter 6).



774 A. Chakraborty, A. E. Gelfand, A. M. Wilson, A. M. Latimer and J. A. Silander

35°S

33°S

31°S

18°E 20°E 22°E 24°E 18°E 20°E 22°E 24°E

0

1

2

3

4

5

(a) (b)

Fig. 6. (a) Potential and (b) transformation-adjusted richness distribution over the CFR with respect to the
six species
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Appendix A: Details of Markov chain Monte Carlo algorithm

Inside the MCMC algorithm, the appropriate conditional distributions for sampling the parameters can
be chosen in several ways to make the run efficient. In what follows, we list steps from one such scheme,
for estimation and prediction by using expressions (4) and (5).

(a) Denote L1.φ/ = Rm,r.φ/R−1
r .φ/, L2.φ/ = RI−m,r.φ/R−1

r .φ/, M1.φ/ = Im − diag{L1.φ/Rr,m.φ/},
M2.φ/= II−m −diag{L2.φ/Rr,I−m.φ/}, X1 =x.s1:m/ and X2 =x.sm+1:I /.

(b) With π.β/ = N.β0, Σ0/, draw β| · · · ∼ t.μβ , Σβ/, where Σ−1
β = Σ−1

0 + σ−2XT
1 {L1.φ/Rr,m.φ/ +

M1.φ/}−1.φ/X1 and μβ =Σβ [Σ−1
0 β0 +σ−2XT

1 {L1.φ/Rr,m.φ/+M1.φ/}−1.φ/ log.λ1:m/].
(c) With π.σ2/= IG.a0, b0/, draw σ2| · · ·∼ IG.aσ2 , bσ2 / where aσ2 =a0 +m=2 and bσ2 =b0 +eT{L1.φ/×

Rr,m.φ/+M1.φ/}−1e=2 for e= log.λ1:m/−X1β.
(d) Draw w.s0

1:r/∼Nr.μw, Σw/, whereΣ−1
w =Rr.φ/−1 +σ−2 LT

1 .φ/M−1
1 .φ/L1.φ/ andΣ−1

w μw =σ−2 LT
1 .φ/×

M−1
1 .φ/{log.λ1:m/−X1β}.

(e) Use π.φ/ ∼ U.φ0, φ1/. In equations (4), marginalizing over w.s0
1:r/, the expression involving φ

becomes

S.φ/=−log{|L1.φ/Rr,m.φ/+M1.φ/|}=2
− .log.λ1:m/−X1β/T{L1.φ/Rr,m.φ/+M1.φ/}−1{log.λ1:m/−X1β}=2σ2:

The inverse and determinant that are involved in the above expression can be calculated efficiently
(as M1.φ/ is diagonal) by using the Sherman–Woodbury–Morrison formula as in Banerjee et al.
(2008). So, one can use a random walk or independent sampler Metropolis–Hasting update for φ.
Then update each of Li.φ/ and Mi.φ/, i=1, 2.

(f) For 1� i�m, π.λi| · · ·/∼ind LN.λi; xT
i β + [L1.φ/w.s0

1:r/]i, σ
2[M1.φ/]ii/×Poisson.yi|λi, qi/. One can

either do a slice sampling (introduce an auxiliary variable u such that u|λ∼ exp.1/1[u > λ]) or a
Metropolis–Hastings sampler.

(g) For prediction of λm+1:I , draw log.λm+i/ ∼ X2[i, ]β + [L2.φ/w.s0
1:r/]i + σ

√
[M2.φ/]iiz, where z ∼

N.0, 1/.
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